Atmospheric Photooxidation Diminishes Light Absorption by Primary Brown Carbon Aerosol from Biomass Burning
2017
Light-absorbing organic aerosols, optically defined as brown carbon (BrC), have been shown to strongly absorb short visible solar wavelengths and significantly impact Earth’s radiative energy balance. There currently exists a knowledge gap regarding the potential impacts of atmospheric processing on the absorptivity of such particles generated from biomass burning. Climate models and satellite retrieval algorithms parametrize the optical properties of BrC aerosols emitted from biomass burning events as unchanging throughout their atmospheric lifecycle. Here, using contact-free optical probing techniques, we investigate the effects of multiple-day photochemical oxidation on the spectral (375–532 nm) optical properties of primary BrC aerosols emitted from smoldering combustion of boreal peatlands. We find the largest effects of oxidation in the near-UV wavelengths, with the 375 nm imaginary refractive index and absorption coefficients of BrC particles decreasing by ∼36% and 46%, respectively, and an increas...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
47
References
76
Citations
NaN
KQI