Local and systemic metabolic alterations in brain, plasma, and liver of rats in response to aging and ischemic stroke, as detected by nuclear magnetic resonance (NMR) spectroscopy

2019 
Abstract Metabolic dysfunction impacts stroke incidence and outcome. However, the intricate association between altered metabolic program due to aging, and focal ischemia in brain, circulation, and peripheral organs is not completely elucidated. Here we identified locally and systemically altered metabolites in brain, liver, and plasma as a result of normal aging, ischemic-stroke, and extended time of reperfusion injury. Comprehensive quantitative metabolic profiling was carried out using nuclear magnetic resonance spectroscopy. Aging, but healthy rats showed significant metabolic alterations in the brain, but only a few metabolic changes in the liver and plasma as compared to younger rats. But, ischemic stroke altered metabolites significantly in liver and plasma of older rats during early acute phase. Major metabolic changes were also seen in the brains of younger rats following ischemic stroke during early acute phase of injury. We further report that metabolic changes occur sequentially in a tissue specific manner during extended reperfusion time of late repair phase. First metabolic alterations occurred in brain due to local injury. Next, changes in circulating metabolites in plasma occurred during acute-repair phase transition time. Lastly, the delayed systemic effect was seen in the peripheral organ, liver that exhibited significant and persistent changes in selected metabolites during later reperfusion time. The metabolic pathways involved in energy/glucose, and amino acid metabolism, inflammation, and oxidative stress were mainly altered as a result of aging and ischemia/reperfusion. Biomarker analysis revealed citrate, lysine, and tyrosine as potential age-independent blood metabolic biomarkers of ischemia/reperfusion. Overall, our study elucidates the complex network of metabolic events as a function of normal aging and acute stroke. We further provide evidence for a clear transition from local to systemic metabolic dysfunction due to ischemic injury in a time dependent manner, which may altogether greatly impact the post-stroke outcome.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    16
    Citations
    NaN
    KQI
    []