Distance matrices of subsets of the Hamming cube

2020 
Graham and Winkler derived a formula for the determinant of the distance matrix of a full-dimensional set of $n + 1$ points $\{ x_{0}, x_{1}, \ldots , x_{n} \}$ in the Hamming cube $H_{n} = ( \{ 0,1 \}^{n}, \ell_{1} )$. In this article we derive a formula for the determinant of the distance matrix $D$ of an arbitrary set of $m + 1$ points $\{ x_{0}, x_{1}, \ldots , x_{m} \}$ in $H_{n}$. It follows from this more general formula that $\det (D) \not= 0$ if and only if the vectors $x_{0}, x_{1}, \ldots , x_{m}$ are affinely independent. Specializing to the case $m = n$ provides new insights into the original formula of Graham and Winkler. A significant difference that arises between the cases $m < n$ and $m = n$ is noted. We also show that if $D$ is the distance matrix of an unweighted tree on $n + 1$ vertices, then $\langle D^{-1} \mathbf{1}, \mathbf{1} \rangle = 2/n$ where $\mathbf{1}$ is the column vector all of whose coordinates are $1$. Finally, we derive a new proof of Murugan's classification of the subsets of $H_{n}$ that have strict $1$-negative type.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    1
    Citations
    NaN
    KQI
    []