Tyrosine Templating in the Self-Assembly and Crystallization of Silk Fibroin

2016 
Native silk fibers exhibit strength and toughness that rival those of the best synthetic fibers. Despite significant research, further insight is still needed to understand the mechanisms by which silkworms are capable of spinning such tough fibers. Here we propose that π–π and π–OH group interactions of tyrosine side chains provide templating effects, such that the crystal-forming domains are in registration, thereby fostering the self-assembly of the spinning dope. Intrinsic fluorescence measurements, in conjunction with circular dichroism, showed that during self-assembly of regenerated silk solutions, the tyrosine residues were localized in a more hydrophobic local environment, suggesting preferential assembly. In situ Fourier transform infrared spectroscopy indicated that cross-linking of the tyrosine residues resulted in the development of extended β-sheet structure. Additionally, control of cross-link density directly influenced the degree of crystallinity upon drying. Molecular dynamics simulation...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    32
    Citations
    NaN
    KQI
    []