Unveiling new disease, pathway, and gene associations via multi-scale neural networks.

2019 
Diseases involve complex processes and modifications to the cellular machinery. The gene expression profile of the affected cells contains characteristic patterns linked to a disease. Hence, biological knowledge pertaining to a disease can be derived from a patient cell's profile, improving our diagnosis ability, as well as our grasp of disease risks. This knowledge can be used for drug re-purposing, or by physicians to evaluate a patient's condition and co-morbidity risk. Here, we look at differential gene expression obtained from microarray technology for patients diagnosed with various diseases. Based on this data and cellular multi-scale organization, we aim to uncover disease--disease links, as well as disease-gene and disease--pathways associations. We propose neural networks with structures inspired by the multi-scale organization of a cell. We show that these models are able to correctly predict the diagnosis for the majority of the patients. Through the analysis of the trained models, we predict and validate disease-disease, disease-pathway, and disease-gene associations with comparisons to known interactions and literature search, proposing putative explanations for the novel predictions that come from our study.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    90
    References
    10
    Citations
    NaN
    KQI
    []