ASP2-1, a polysaccharide from Acorus tatarinowii Schott, inhibits osteoclastogenesis via modulation of NFATc1 and attenuates LPS-induced bone loss in mice

2020 
Spectroscopic analysis of HPLC-purified 7.3-kD Acorus tatarinowii Schott root polysaccharide ASP2-1 (FT-IR, NMR) revealed respective monosaccharide proportions of glucose: galactose: arabinose: xylose: galacturonic acid: mannose: rhamnose: glucuronic acid:fucose of 49.1:16.0:11.6:10.2:5.3:2.9:2.2:1.7:0.8. In vitro, ASP2-1 inhibited osteoclastogenesis-associated bone resorption, RANKL-induced osteoclastogenesis and F-actin ring formation and suppressed osteoclastogenesis-associated gene expression (e.g., TRAP, OSCAR, Atp6v0d2, αV, β3, MMP9 and CtsK) as shown via RT-PCR. ASP2-1-treated RANKL-stimulated bone marrow-derived macrophages exhibited decreased levels of NFATc1 and c-Fos mRNAs and corresponding transcription factor proteins, elevated expression of negative NFATc1 regulators (Mafb, IRF8, Bcl6) and reduced their upstream negative regulator (Blimp1) expression. ASP2-1 inhibition of NFATc1 expression involved PLCγ2-Ca2+ oscillation-calcineurin axis suppression, reflecting suppression of RANKL-induced PLCγ2 activation (and associated Ca2+ oscillation) and calcineurin catalytic subunit PP2BAα expression without inhibiting NF-κB and MAPKs activation or phosphorylation. Staining (H&E, TRAP) and micro-CT assays revealed ASP2-1 attenuated bone destruction and osteoclast over-activation and improved tibia micro-architecture in a murine LPS-induced bone loss model. Thus, ASP2-1 may alleviate inflammatory bone loss-associated diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    1
    Citations
    NaN
    KQI
    []