The Effect of Low-Molecular-Weight Poly(ethylene glycol) (PEG) Plasticizers on the Transport Properties of Lithium Fluorosulfonimide Ionic Melt Electrolytes

2014 
The influence of low-molecular-weight poly(ethylene glycol) (PEG, Mw ≈ 550 Da) plasticizers on the rheology and ion-transport properties of fluorosulfonimide-based polyether ionic melt (IM) electrolytes has been investigated experimentally and via molecular dynamics (MD) simulations. Addition of PEG plasticizer to samples of IM electrolytes caused a decrease in electrolyte viscosity coupled to an increase in ionic conductivity. MD simulations revealed that addition of plasticizer increased self-diffusion coefficients for both cations and anions with the plasticizer being the fastest diffusing species. Application of a VTF model to fit variable-temperature conductivity and fluidity data shows that plasticization decreases the apparent activation energy (Eₐ) and pre-exponential factor A for ion transport and also for viscous flow. Increased ionic conductivity with plasticization is thought to reflect a combination of factors including lower viscosity and faster polyether chain segmental dynamics in the electrolyte, coupled with a change in the ion transport mechanism to favor ion solvation and transport by polyethers derived from the plasticizer. Current interrupt experiments with Li/electrolyte/Li cells revealed evidence for salt concentration polarization in electrolytes containing large amounts of plasticizer but not in electrolytes without added plasticizer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []