Connectomics analysis reveals first, second, and third order thermosensory and hygrosensory neurons in the adult Drosophila brain

2020 
Animals exhibit innate and learned preferences for temperature and humidity - conditions critical for their survival and reproduction. Here, we leveraged a whole adult brain electron microscopy volume to study the circuitry associated with antennal thermosensory and hygrosensory neurons, which target specific ventroposterior (VP) glomeruli in the Drosophila melanogaster antennal lobe. We have identified two new VP glomeruli, in addition to the five known ones, and the projection neurons (VP PNs) that relay VP information to higher brain centres, including the mushroom body and lateral horn, seats of learned and innate olfactory behaviours, respectively. Focussing on the mushroom body lateral accessory calyx (lACA), a known thermosensory neuropil, we present a comprehensive connectome by reconstructing neurons downstream of heating- and cooling-responsive VP PNs. We find that a few lACA-associated mushroom body intrinsic neurons (Kenyon cells) solely receive thermosensory inputs, while most receive additional olfactory and thermo- or hygrosensory PN inputs in the main calyx. Unexpectedly, we find several classes of lACA-associated neurons that form a local network with outputs to other brain neuropils, suggesting that the lACA serves as a general hub for thermosensory circuitry. For example, we find DN1 pacemaker neurons that link the lACA to the accessory medulla, likely mediating temperature-based entrainment of the circadian clock. Finally, we survey strongly connected downstream partners of VP PNs across the protocerebrum; these include a descending neuron that receives input mainly from dry-responsive VP PNs, meaning that just two synapses might separate hygrosensory inputs from motor neurons in the nerve cord.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    7
    Citations
    NaN
    KQI
    []