Gallium nitride nanowires and microwires with exceptional length grown by metal organic chemical vapor deposition via titanium film

2015 
We present a new approach for synthesis of GaN nanowires and microwires by metal organic chemical vapor deposition via a thin titanium film evaporated onto sapphire substrate prior to growth. Titanium etches a two-dimensional GaN layer deposited at the initial stage and GaN nanowires subsequently emerge at the boundaries of the etched grains. These wires grow at an exceptional elongation rate of 18 μm/min and extend radially at a rate of 0.14 μm/min. The GaN layer between the wires grows at a rate of 0.1 μm/min. High material quality of these structures is confirmed by micro-photoluminescence spectroscopy. We investigate the initial nucleation stage, the time evolution of the wire length and diameter, the length and diameter distributions and speculate about a mechanism that yields the observed growth behavior.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    7
    Citations
    NaN
    KQI
    []