A finite element strategy coupling a gradient-enhanced damage model and cohesive cracks for quasi-brittle materials

2013 
A new combined strategy to describe failure of quasi-brittle materials is presented thus allowing the complete description of the process, from initiation of damage to crack propagation. For the early stages of the process, and in order to overcome the well-known problems characterising local descriptions of damage (e.g. mesh-dependence), a gradient-enhanced model based on smoothed displacements is employed. In order to deal with material separation, this continuous description is coupled to a cohesive crack when damage parameter exceeds a critical value. Some difficulties may arise when dealing with the transition from regularised damage models to evolving cracks: crack initiation, crack-path direction, energetic equivalence... In this work, a discrete cohesive crack is introduced when the damage parameter exceeds a critical value. On the one hand, and to determine the crack-path direction, the medial axis of the already damaged profile is computed. That is, a geometric tool widely used in the computer graphics field is used here to track the crack surface. Since this technique is exclusively based on the shape of the regularised damage profile, no mesh sensitivity is observed when determining the crack direction. On the other hand, and to define the cohesive law, an energy balance is imposed thus ensuring that the fracture energy not yet dissipated in the damage zone is transferred to the crack.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []