Parametric Study of Ultrasonic De-Icing Method on a Plate with Coating

2020 
Ultrasonic de-icing is a promising method to de-ice structures by using lightweight and simple transducers, with the advantage of low power consumption. A successful ultrasonic de-icing technique requires the understanding of the effects of different parameters on de-icing. This paper presents a thorough parametric study of the ultrasonic de-icing method on a plate with coating. First, the dispersion equations of shear horizontal (SH) and Lamb waves were derived based on the global matrix method. Meanwhile, interface shear concentration coefficients (ISCC) were introduced to represent the ability of ultrasonic de-icing, which was further integrated into Lamb wave and SH waves dispersion curves for the selection of optimal frequencies. Second, a three-layer plate model (host plate-coating-ice) was used to demonstrate the effect of different parameters of coating and the thickness of ice on ultrasonic de-icing. The theoretical model provided the design principle of coating and ultrasonic parameters required for efficient de-icing. Finally, an experiment was conducted on an ultrasonic de-icing platform to validate the proposed ultrasonic de-icing method. In this process, material parameters including the Young’s modulus, thickness of coating, and thickness of the ice layer were analyzed. The trends of power consumption and optimal frequency of experiments are in good agreement with the analytical calculated results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    1
    Citations
    NaN
    KQI
    []