Generalized Orientation Learning in Robot Task Space

2019 
In the context of imitation learning, several approaches have been developed so as to transfer human skills to robots, with demonstrations often represented in Cartesian or joint space. While learning Cartesian positions suffices for many applications, the end-effector orientation is required in many others. However, several crucial issues arising from learning orientations have not been adequately addressed yet. For instance, how can demonstrated orientations be adapted to pass through arbitrary desired points that comprise orientations and angular velocities? In this paper, we propose an approach that is capable of learning multiple orientation trajectories and adapting learned orientation skills to new situations (e.g., via-point and end-point), where both orientation and angular velocity are addressed. Specifically, we introduce a kernelized treatment to alleviate explicit basis functions when learning orientations. Several examples including comparison with the state-of-the-art dynamic movement primitives are provided to verify the effectiveness of our method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    14
    Citations
    NaN
    KQI
    []