Highly Effective Radioisotope Cancer Therapy with a Non-Therapeutic Isotope Delivered and Sensitized by Nanoscale Coordination Polymers

2018 
Nuclear medicine with radioisotopes is extremely useful for clinical cancer diagnosis, prognosis, and treatment. Herein, polyethylene glycol (PEG)-modified nanoscale coordination polymers (NCPs) composed of hafnium (Hf4+) and tetrakis (4-carboxyphenyl) porphyrin (TCPP) are prepared via a one-pot reaction. By chelation with the porphyrin structure of TCPP, such Hf-TCPP-PEG NCPs could be easily labeled with 99mTc4+, an imaging radioisotope widely used for single-photon emission computed tomography (SPECT) in a clinical environment. Interestingly, Hf, as a high-Z element in such 99mTc-Hf-TCPP-PEG NCPs, could endow nontherapeutic 99mTc with the therapeutic function of killing cancer cells, likely owing to the interaction of Hf with γ rays emitted from 99mTc to produce charged particles for radiosensitization. With efficient tumor retention, as revealed by SPECT imaging, our 99mTc-Hf-TCPP-PEG NCPs offer exceptional therapeutic results in eliminating tumors with moderate doses of 99mTc after either local or sys...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    35
    Citations
    NaN
    KQI
    []