Light bending by the cosmological constant

2021 
We revisit the question of whether the cosmological constant $\Lambda$ affects the cosmological gravitational bending of light, by numerical integration of the geodesic equations for a Swiss cheese model consisting of a point mass and a compensated vacuole, in a Friedmann-Robertson-Walker background. We find that there is virtually no dependence of the light bending on the cosmological constant that is not already accounted for in the angular diameter distances of the standard lensing equations, plus small modifications that arise because the bending is restricted to a finite region covered by the hole. The residual $\Lambda$ dependence for a $10^{13}\,M_{\odot}$ lens is at the level of 1 part in $10^7$, and even this might be accounted for by small changes in the hole size evolution as the photon crosses. We therefore conclude that there is no need for modification of the standard cosmological lensing equations in the presence of a cosmological constant.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []