Reducing scan time of paediatric 99mTc-DMSA SPECT via deep learning

2020 
AIM To investigate the feasibility of reducing the scan time of paediatric technetium 99m (99mTc) dimercaptosuccinic acid (DMSA) single-photon-emission computed tomographic (SPECT) using a deep learning (DL) method. MATERIAL AND METHODS A total of 112 paediatric 99mTc-DMSA renal SPECT scans were analysed retrospectively. Of the 112 examinations, 88 (84 for training and four for validation) were used to train a DL-based model that could generate full-acquisition-time reconstructed SPECT images from half-time acquisition. The remaining 24 examinations were used to evaluate the performance of the trained model. RESULTS DL-based SPECT images obtained from half-time acquisition have image quality similar to the standard clinical SPECT images obtained from full-acquisition-time acquisition. Moreover, the accuracy, sensitivity and specificity of the DL-based SPECT images for detection of affected kidneys were 91.7%, 83.3%, and 100%, respectively. CONCLUSION These preliminary results suggest that DL has the potential to reduce the scan time of paediatric 99mTc-DMSA SPECT imaging while maintaining diagnostic accuracy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    2
    Citations
    NaN
    KQI
    []