Preparation of Nano-enzyme aggregates by crosslinking lipase with sodium tripolyphosphate

2020 
Abstract Cross-linked enzyme aggregates (CLEAs) are considered as an effective tool for the immobilization of enzyme. The ionic cross-linking agent-sodium tripolyphosphate (TPP) was first used in preparing CLEAs. Aspergillus niger lipase was precipitated with ammonium sulfate and further cross-linked by TPP. The factors including enzyme concentration, pH of cross-linking medium, TPP dosage and cross-linking time were optimized. Maximum recovery activity (99.5 ± 0.634%) and cross-linking yield (88.4 ± 0.46%) can be obtained under the optimal process conditions, which can illustrate TPP had little effect on enzyme activity. CLEAs showed improved activity over broad pH and temperature range compared to the free enzyme. The thermal stability was obviously improved compared to free enzyme under the optimal temperature (40℃) and the half-life was 7.5-fold higher than that of free enzyme. Moreover, scanning electron microscopy (SEM) revealed that CLEAs had a cavity with porous structure and the particle size was 249 ± 3.98 nm. X-ray diffraction (XRD) showed the crystallinity of the CLEAs decreased. The changes in secondary structures of CLEAs revealed the increment in conformational rigidity. Such results suggested that the CLEAs has ideal application prospects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    6
    Citations
    NaN
    KQI
    []