Wafer-bonded InGaAs/silicon avalanche photodiodes

2002 
Wafer-bonded avalanche photodiodes (APDs) combining InGaAs for the absorption layer and silicon for the multiplication layer have been fabricated. The reported APDs have a very low room-temperature dark current density of only 0.7 mA/cm 2 at a gain of 10. The dark current level is as low as that of conventional InGaAs/InP APDs. High avalanche gains in excess of 100 are presented. The photodiode responsivity at a wavelength of 1.31 micrometers is 0.64 A/W, achieved without the use of an anti-reflection coating. The RC-limited bandwidth is 1.45 GHz and the gain-bandwidth product is 290 GHz. The excess noise factor F is much lower than that of conventional InP-based APDs, with values of 2.2 at a gain of 10 and 2.3 at a gain of 20. This corresponds to an effective ionization rate ratio k eff as low as 0.02. The expected receiver sensitivity for 2.5 Gb/s operation at (lambda) = 1.31 um using our InGaAs/silicon APD is -41 dBm at an optimal gain of M = 80.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    5
    Citations
    NaN
    KQI
    []