Characterization of a common precursor population for dendritic cells

2002 
Dendritic cells (DCs) are essential for the establishment of immune responses against pathogens and tumour cells, and thus have great potential as tools for vaccination and cancer immunotherapy trials. Experimental evidence has led to a dual DC differentiation model, which involves the existence of both myeloid- and lymphoid-derived DCs1. But this concept has been challenged by recent reports demonstrating that both CD8- and CD8+ DCs, considered in mice as archetypes of myeloid and lymphoid DCs respectively, can be generated from either lymphoid2,3,4 or myeloid progenitors3,4. The issue of DC physiological derivation therefore remains an open question. Here we report the characterization of a DC-committed precursor population, which has the capacity to generate all the DC subpopulations present in mouse lymphoid organs—including CD8- and CD8+ DCs, as well as the B220+ DC subset—but which is devoid of myeloid or lymphoid differentiation potential. These data support an alternative model of DC development, in which there is an independent, common DC differentiation pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    214
    Citations
    NaN
    KQI
    []