Development of an Ecologic Marine Classification in the New Zealand Region

2007 
We describe here the development of an ecosystem classification designed to underpin the conservation management of marine environments in the New Zealand region. The classification was defined using multivariate classification using explicit environmental layers chosen for their role in driving spatial variation in biologic patterns: depth, mean annual solar radiation, winter sea surface temperature, annual amplitude of sea surface temperature, spatial gradient of sea surface temperature, summer sea surface temperature anomaly, mean wave-induced orbital velocity at the seabed, tidal current velocity, and seabed slope. All variables were derived as gridded data layers at a resolution of 1 km. Variables were selected by assessing their degree of correlation with biologic distributions using separate data sets for demersal fish, benthic invertebrates, and chlorophyll-a. We developed a tuning procedure based on the Mantel test to refine the classification’s discrimination of variation in biologic character. This was achieved by increasing the weighting of variables that play a dominant role and/or by transforming variables where this increased their correlation with biologic differences. We assessed the classification’s ability to discriminate biologic variation using analysis of similarity. This indicated that the discrimination of biologic differences generally increased with increasing classification detail and varied for different taxonomic groups. Advantages of using a numeric approach compared with geographic-based (regionalisation) approaches include better representation of spatial patterns of variation and the ability to apply the classification at widely varying levels of detail. We expect this classification to provide a useful framework for a range of management applications, including providing frameworks for environmental monitoring and reporting and identifying representative areas for conservation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    47
    Citations
    NaN
    KQI
    []