Safety Evaluation of Lane and Shoulder Width Combinations on Rural, Two-Lane, Undivided Roads

2009 
The Federal Highway Administration (FHWA) organized a pooled fund study of 26 States to evaluate low-cost safety strategies as part of its strategic highway safety effort. The goal of this study is to evaluate the safety effectiveness of various lane-shoulder width configurations for fixed total paved widths as a countermeasure for roadway departure crashes. Where possible, crash modification factors (CMF) are provided for specific lane-shoulder configurations. The cost of this treatment is essentially zero because it involves only the location of pavement markings. A matched case-control analysis was applied to geometric, traffic, and crash data for road segments in Pennsylvania and Washington. In general, wider pavement widths 9.75–10.97 m (32–36 ft) are associated with fewer crashes than narrower paved widths 7.92–9.14 m (26–30 ft). For specific lane-shoulder configurations, there is a general safety benefit associated with wider lanes and narrower shoulders for a fixed pavement width. For 7.92- to 9.75-m (26- to 32-ft) total paved widths, a 3.66-m (12-ft) lane provides the optimal safety benefit; the CMF ranges from 0.94 to 0.97, indicating a 3–6 percent crash reduction for 3.66-m (12-ft) lanes compared with 3.05-m (10-ft) lanes. For a 10.36-m (34-ft) total paved width, 3.35-m (11-ft) lanes provide the optimal safety benefit; CMF was 0.78 compared with the 3.05-m (10-ft) baseline. For a 10.97-m (36-ft) total paved width, both 3.35-m and 3.66-m (11-ft and 12-ft) lanes provide the optimal safety benefit; CMF was 0.95 compared with the 3.05-m (10-ft) baseline. Based on the estimated safety effectiveness of this strategy, specific lane-shoulder configurations have the potential to reduce crashes cost effectively on rural, two-lane, undivided roads. However, limited sample sizes make it difficult to identify statistically significant differences between certain lane-shoulder configurations within a total paved width.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    14
    Citations
    NaN
    KQI
    []