Blockade of cytosolic phospholipase A2α prevents experimental autoimmune encephalomyelitis and diminishes development of Th1 and Th17 responses

2008 
Abstract Cytosolic phospholipase A 2 α (cPLA 2 α) is the rate-limiting enzyme for release of arachidonic acid, which is converted primarily to prostaglandins via the cyclooxygenase (COX) 1/2 pathways, and leukotrienes via the 5-lipoxygenase (LO) pathway. We utilized inhibitors of cPLA 2 α, COX-1/2 and 5-LO to determine the potential roles of these enzymes in development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Blocking cPLA 2 α prevented EAE development and greatly reduced antigen-induced production of Th1-type cytokines and IL-17. Blocking COX-1/2 delayed onset and reduced severity of EAE, and reduced production of Th1-type cytokines, but not IL-17. Blocking 5-LO delayed onset and reduced cumulative severity of EAE, but did not reduce production of Th1-type cytokines or IL-17. Finally, blockade of cPLA 2 α from the onset of clinical EAE reduced duration of EAE relapses. Therefore, cPLA 2 α represents a potential therapeutic target for treatment of MS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    49
    Citations
    NaN
    KQI
    []