A decision support model for risk management of hazardous materials road transportation based on quality function deployment

2019 
Abstract Risk management of hazardous materials (hazmats) road transportation has long been a concern because of the potential hazards that poses to society and the environment. In this work, a systematic and semi-quantitative decision support framework for risk management of hazmats road transportation based on the combination of quality function deployment (QFD), fuzzy analytic hierarchy process (F-AHP), fuzzy failure mode and effect analysis (F-FMEA), and nonlinear goal programming is proposed. The QFD is used innovatively to construct the overall framework, which contains three main components of general risk management: risk identification, risk assessment, and risk control. The F-AHP is used to build a hierarchical risk assessment system and determine the importance rating of each risk factor. The F-FMEA is used to evaluate the potential risks of risk control measures and determine the risk adjustment coefficient of each risk measure, which is used subsequently to modify the fulfillment level of risk measure in the nonlinear goal programming model. To address the inherent vagueness and uncertainty contained in the risk management process, the fuzzy set theory is introduced as an effective tool. An empirical case on risk management of a hazmats transportation company is presented to demonstrate the effectiveness and feasibility of the proposed methodology. Some managerial implications on risk management of hazmats road transportation are provided based on the obtained findings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    11
    Citations
    NaN
    KQI
    []