DIII-D Experiments and Modeling of Core Confinement in Quiescent Double Barrier Plasmas

2003 
We continue to explore Quiescent Double Barrier (QDB) operation on DIII-D to address issues of critical importance to internal transport barrier (ITB) plasmas. QDB plasmas exhibit both a core transport barrier and a quiescent, H-mode edge barrier. Both experiments and modeling of these plasmas are leading to an increased understanding of this regime and it's potential advantages for advanced-tokamak (AT) burning-plasma operation. These near steady plasma conditions have been maintained on DIII-D for up to 4s, times greater than 35{tau}{sub E}, and exhibit high performance with {beta}{sub N} > 2.5 and neutron production rates S{sub n} {approx} 1 x 10{sup 16}s{sup -1}. Recent experiments have been directed at exploring both the current profile modification effects of electron cyclotron current drive (ECCD) and electron cyclotron (ECH) heating-induced changes in temperature, density and impurity profiles. We use model-based analysis to determine the effects of both heating and current drive on the q-profile in these QDB plasmas. Experiments based on predictive modeling achieved a significant modification to the q-profile evolution [1] resulting from the non-inductive current drive effects due to direct ECCD and changes in the bootstrap and neutral beam current drive components. We observe that the injection of EC power inside themore » barrier region changes the density peaking from n{sub e}/ = 2.1 to 1.5 accompanied by a significant reduction in the core carbon and high-Z impurities, nickel and copper.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []