First-order phase transitions in outbreaks of co-infectious diseases and the extended general epidemic process

2016 
In co-infections, positive feedback between multiple diseases can accelerate outbreaks. In a recent letter Chen, Ghanbarnejad, Cai, and Grassberger (CGCG) introduced a spatially homogeneous mean-field model system for such co-infections, and studied this system numerically with focus on the possible existence of discontinuous phase transitions. We show that their model coincides in mean-field theory with the homogenous limit of the extended general epidemic process (EGEP). Studying the latter analytically, we argue that the discontinuous transition observed by CGCG is basically a spinodal phase transition and not a first-order transition with phase coexistence. We derive the conditions for this spinodal transition along with predictions for important quantities such as the magnitude of the discontinuity. We also shed light on a true first-order transition with phase coexistence by discussing the EGEP with spatial inhomogeneities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    34
    Citations
    NaN
    KQI
    []