Multiband Superconductivity in Heavy Fermion Compound CePt3Si without Inversion Symmetry: An NMR Study on a High-Quality Single Crystal

2009 
We report on novel superconducting characteristics of the heavy fermion (HF) superconductor CePt 3 Si without inversion symmetry through 195 Pt-NMR study on a single crystal with T c = 0.46 K that is lower than T c ∼0.75 K for polycrystals. We show that the intrinsic superconducting characteristics inherent to CePt 3 Si can be understood in terms of the unconventional strong-coupling state with a line–node gap below T c = 0.46 K. The mystery about the sample dependence of T c is explained by the fact that more or less polycrystals and single crystals inevitably contain some disordered domains, which exhibit a conventional BCS s -wave superconductivity (SC) below 0.8 K. In contrast, the Neel temperature T N ∼2.2 K is present regardless of the quality of samples, revealing that the Fermi surface responsible for SC differ from that for the antiferromagnetic order. These unusual characteristics of CePt 3 Si can be also described by a multiband model; in the homogeneous domains, the coherent HF bands are respo...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    36
    Citations
    NaN
    KQI
    []