Surface crack growth of silicon nitride bearings under rolling contact fatigue

2004 
Surface crack growth of silicone nitride ceramic bearings under rolling contact fatigue has been investigated from the viewpoints of contact stresses (ring crack model) and fluid pressure (wedge effect model). The mechanisms of these two models have been investigated independently; however, it was impossible to separate the effects of contact stresses and fluid pressure on surface crack growth. In this paper the effects of contact stresses (ring crack model) on surface crack growth are investigated. In the ring crack model the crack growth is caused by contact stresses around the circumference of the contact circle. The growth of surface cracks located inside and outside the contact track was observed in order to obtain data from which we could reexamine the ring crack model. The outside cracks under rolling contact fatigue were propagated by contact stresses alone and also the inside cracks grew as slowly as the outside cracks. We concluded that the cracks are propagated by the single effect of contact stresses. Preliminary observations of surface crack growth showed that the cracks were unaffected by wear and residual stresses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    16
    Citations
    NaN
    KQI
    []