General route of nanowire field effect transistor

2010 
An increasing number of technologies require large-scale integration of separately fabricated nano-objects into spatially organized, functional systems. Here we introduce an approach for dielectrophoresis and reserse transfer printing method. By doing these method we can easily get a nanowire bottom gate transistor with high performance. Firstly, nanowire bridge was formed simply by dielectrophoresis and then by reverse transferring of this bridge on the gate dielectric layer, a nanowire field effect transistor was fabricated. The on/off ratio, threshold voltage, field effect hole mobility, hole concentration and threshold swing of the transistor were measured by ∼6.6×10 6 , −7.2V, 9.9cm 2 /V·s and ∼1.453×10 16 /cm −3 , and 0.504V/decade.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []