IBM MNLP IE at CASE 2021 Task 1: Multigranular and Multilingual Event Detection on Protest News

2021 
In this paper, we present the event detection models and systems we have developed for Multilingual Protest News Detection - Shared Task 1 at CASE 2021. The shared task has 4 subtasks which cover event detection at different granularity levels (from document level to token level) and across multiple languages (English, Hindi, Portuguese and Spanish). To handle data from multiple languages, we use a multilingual transformer-based language model (XLM-R) as the input text encoder. We apply a variety of techniques and build several transformer-based models that perform consistently well across all the subtasks and languages. Our systems achieve an average F_1 score of 81.2. Out of thirteen subtask-language tracks, our submissions rank 1st in nine and 2nd in four tracks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    2
    Citations
    NaN
    KQI
    []