Geospatial Approach in Modeling Soil Erosion Processes in Predicting Soil Erosion and Nutrient Loss in Hilly and Mountainous Landscape

2019 
Soil erosion due to water is one of the most important land degradation processes and considered as major land degradation type in the world (UNEP 1994; Jain et al. 2010). The entire Himalayan region is facing serious problem of land degradation due to soil erosion. Deforestation and inappropriate land utilization coupled with steep sloping terrain, fragile, and young soil with erosive rainfall pattern have accelerated soil erosion in the Himalayan landscape. It reduces soil fertility by removing top soil layer and large amount of soil nutrients along with sediments (Oldeman 1994; Bai et al. 2008). It results in reduction in soil quality that adversely affects the suitability of soils for various agricultural crops and vegetation types. Harmonized statistics by ICAR (NBSSL Pandey et al. 2008). Nearly 29% of total eroded soil is permanently lost to the sea, while 61% is simply translocated from one place to another, and the remaining 10% is deposited in reservoirs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    3
    Citations
    NaN
    KQI
    []