Fabrication of a ball end nose micro milling tool by tangential laser ablation

2018 
Abstract The general trend towards miniaturization of components is leading to an increasing demand for micro cutting tools. Such tools are found in a variety of applications like optics manufacturing, mold machining or medical technology. Indeed, micromachining exhibits a high efficiency, accuracy and low cost in comparison to other micro processing technologies. Micro cutting tools are mostly produced by grinding, a mechanical process, which might damage the tool due to induced forces, vibrations and heat. These detrimental effects cause the high scrap rate in the manufacturing of micro cutting tools and limited geometrical flexibility. A new approach for the manufacturing of micro cutting tools is given by the ultrashort-pulsed laser technology: it enables material removal, which is independent of the hardness of the workpiece material and with only a negligible heat-affected zone. In most cases, laser ablation is disadvantaged in contrast to grinding because of its relatively low material-removal rate. When it comes to the manufacturing of micro cutting tools the small amount of material to be removed makes the ultra-short pulsed laser an interesting alternative to grinding. Furthermore, the laser ablation is a force and wear-free process, which ensures high precision. In this paper, a commercially available micro ball end mill geometry is measured by micro X-ray tomography and 3D microscopy. The movement of the mechanical axes and the path of the laser beam for manufacturing the desired tool are determined based on these measurements. The milling tools with a diameter of 100 µm are produced from cemented carbide blanks, on a 8-axis laser machining center. After machining, the tools are analyzed by SEM and using FIB: By creating a cross section perpendicular to the cutting edge the heat-affected zone is examined. Finally, the cutting tool is successfully applied for the manufacturing of micro electrodes in copper for an EDM process while recording the cutting forces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    5
    Citations
    NaN
    KQI
    []