Subsonic structure and optically thick winds from Wolf-Rayet stars
2018
Wolf-Rayet star's winds can be so dense and so optically thick that the photosphere appears in the highly supersonic part of the outflow, veiling the underlying subsonic part of the star, and leaving the initial acceleration of the wind inaccessible to observations. We investigate the conditions and the structure of the subsonic part of the outflow of Galactic WR stars, in particular of the WNE subclass; our focus is on the conditions at the sonic point. We compute 1D hydrodynamic stellar structure models for massive helium stars adopting outer boundaries at the sonic point. We find that the outflows of our models are accelerated to supersonic velocities by the radiative force from opacity bumps either at temperatures of the order of 200kK by the Fe opacity bump or of the order of 50kK by the HeII opacity bump. For a given mass-loss rate, the conditions in the subsonic part of the outflow are independent from the detailed physical conditions in the supersonic part. The close proximity to the Eddington limit at the sonic point allows us to construct a Sonic HR diagram, relating the sonic point temperature to the L/M ratio and the stellar mass-loss rate, thereby constraining the sonic point conditions, the subsonic structure, and the stellar wind mass-loss rates from observations. The minimum mass-loss rate necessary to have the flow accelerated to supersonic velocities by the Fe opacity bump is derived. A comparison of the observed parameters of Galactic WNE stars to this minimum mass-loss rate indicates that their winds are launched to supersonic velocities by the radiation pressure arising from the Fe-bump. Conversely, models which do not show transonic flows from the Fe opacity bump form inflated envelopes. We derive an analytic criterion for the appearance of envelope inflation in the subphotospheric layers.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
118
References
8
Citations
NaN
KQI