The promotion of axon extension in vitro using polymer-templated fibrin scaffolds.

2011 
Abstract Biomaterial nerve cuffs are a clinical alternative to autografts and allografts as a means to repair segmental peripheral nerve defects. However, existing clinical biomaterial constructs lack true incorporation of physical guidance cues into their design. In both two- and three-dimensional systems, it is known that substrate geometry directly affects rates of axon migration. However, the ability to incorporate these cues into biomaterial scaffolds of sufficient porosity to promote robust nerve regeneration in three-dimensional systems is a challenge. We have developed fibrin constructs fabricated by a sacrificial templating approach, yielding scaffolds with multiple 10–250 μm diameter conduits depending on the diameter of the template fibers. The resulting scaffolds contained numerous, highly aligned conduits, had porosity of ∼ 80%, and showed mechanical properties comparable to native nerve (150–300 kPa Young’s modulus). We studied the effects of the conduit diameters on the rate of axon migration through the scaffold to investigate if manipulation of this geometry could be used to ultimately promote more rapid bridging of the scaffold. All diameters studied led to axon migration, but in contrast to effects of fiber diameters in other systems, the rate of axon migration was independent of conduit diameter in these templated scaffolds. However, aligned conduits did support more rapid axon migration than non-aligned, tortuous controls.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    50
    Citations
    NaN
    KQI
    []