Theoretical and experimental method for determining elastic characteristics of nanomaterials

2019 
The method allows determining the mechanical characteristic of nanoobjects was presented. A heterogeneous material consisting of a nanophase and a binder phase was considered, the mass and volume concentrations of components were given. Heterogeneous material is reduced to homogeneous by averaging methods while the mechanical characteristics will be associated with averaged ones. Assuming that the mechanical characteristics of the binder and averaged homogeneous materials are known from mechanical tests, the system of equations allow us to determine the mechanical characteristics of nanoobjects included in this heterogeneous material. It is believed that the mechanical characteristics of bonding and averaged homogeneous materials make it possible to obtain equations of equations that allow one to determine the mechanical characteristics of nano-objects present in this heterogeneous material. Classical mechanical tests were carried out, describing the uniaxial stress and strain states of materials, which made it possible to obtain an analytical form the dependences of the mechanical characteristics of nanophases depending on their size. Specific examples are given for silica dioxide nanoparticles (Aerosil and Tarkosil powders).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    1
    Citations
    NaN
    KQI
    []