Theoretical prediction of the local structures and transport properties of binary alkali chloride salts for concentrating solar power
2017
Abstract Comprehensive molecular simulations have been carried out to compute local structures and transport properties of different components of binary NaCl-KCl over a wide operating temperature range. The partial radial distribution functions, coordination number curves and angular distribution functions were calculated to analyze the influence of temperature and component on local structures of molten Alkali Chlorides. Transport properties were calculated by using reverse non-equilibrium molecular dynamics (RNEMD) simulations including densities, shear viscosity and thermal conductivity. The results show that ion clusters are considered to be formed and the distance of ion clusters become larger with increasing temperature which has great influence on macro-properties. The calculated properties have a good agreement with the experimental data, and similar method could be used to computationally calculate the properties of various molten salts and their mixtures.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
26
References
21
Citations
NaN
KQI