Multi-modal Intent Recognition Method for the Soft Hand Rehabilitation Exoskeleton

2020 
Stroke has become the second most disabling disease in the world. Due to the intensive demand for physical therapists and the severe dependence on hospitals, the cost for the treatment of stroke patients is huge. As the most flexible limb of the human body, the hand faces more severe challenges, which has a much lower degree of recovery than the upper and lower limbs. In the face of these challenges, a new treatment, exoskeleton-based rehabilitation, has demonstrated new vitality. This paper proposes a novel design of the soft hand exoskeleton based on bionics and anatomy and the exoskeleton could help the users bend and extend their fingers, which would greatly improve the motor ability of stroke patients. Through the control of the six drive motors, the exoskeleton could achieve most of the hand’s freedom of training. At the same time, we propose a multi-modal intent recognition method based on machine vision and machine speech. Under specific rehabilitation training scenarios, both healthy subjects and patients could complete grasping tasks in the wearing of the exoskeleton, overcoming potential security risks caused by misidentification due to using the single-modal intent understanding method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []