LandCover.ai: Dataset for Automatic Mapping of Buildings, Woodlands, Water and Roads from Aerial Imagery

2021 
Monitoring of land cover and land use is crucial in natural resources management. Automatic visual mapping can carry enormous economic value for agriculture, forestry, or public administration. Satellite or aerial images combined with computer vision and deep learning enable precise assessment and can significantly speed up change detection. Aerial imagery usually provides images with much higher pixel resolution than satellite data allowing more detailed mapping. However, there is still a lack of aerial datasets made for the segmentation, covering rural areas with a resolution of tens centimeters per pixel, manual fine labels, and highly publicly important environmental instances like buildings, woods, water, or roads.Here we introduce LandCover.ai (Land Cover from Aerial Imagery) dataset for semantic segmentation. We collected images of 216.27 km2 rural areas across Poland, a country in Central Europe, 39.51 km2 with resolution 50 cm per pixel and 176.76 km2 with resolution 25 cm per pixel and manually fine annotated four following classes of objects: buildings, woodlands, water, and roads. Additionally, we report simple benchmark results, achieving 85.56% of mean intersection over union on the test set. It proves that the automatic mapping of land cover is possible with a relatively small, cost-efficient, RGB-only dataset. The dataset is publicly available at https://landcover.ai/
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    4
    Citations
    NaN
    KQI
    []