Relating field-induced shift in transition temperature to the kinetics of coexisting phases in magnetic shape memory alloys

2011 
In a magnetic shape memory alloy system, we vary composition following phenomenological arguments to tune macroscopic properties. We achieve significantly higher shift in austenite to martensitic phase transition temperature with magnetic field. This enhancement is accompanied by significant broadening of the transition and by field-induced arrest of kinetics, both of which are related to the dynamics of the coexisting phases. This reveals hitherto unknown interrelationship between different length scales. This may serve as an effective route for comprehensive understanding of similar multicomponent systems which show considerable variation in physical properties by minor change in microscopic parameters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    20
    Citations
    NaN
    KQI
    []