Gait analysis and quantitative drug effect evaluation in Parkinson disease by jointly EEG-EMG monitoring
2017
This work addresses the rising need for a diagnostic tool for the evaluation of the effectiveness of a drug treatment in Parkinson disease, allowing the physician to monitor of the patient gait at home and to shape the treatment on the individual peculiarity. In aim, we present a cyber-physical system for real-time processing EEG and EMG signals. The wearable and wireless system extracts the following indexes: (i) typical activation and deactivation timing of single muscles and the duty cycle in a single step (ii) typical and maximum co-contractions, as well as number of co-contraction/s. The indexes are validated by using Movement Related Potentials (MRPs). The signal processing stage is implemented on Altera Cyclone V FPGA. In the paper, we show in vivo measurements by comparing responses before and after the drug (Levodopa) treatment. The system quantifies the effect of the Levodopa treatment detecting: (i) a 17% reduction in typical agonist-antagonist co-contractions time (ii) 23.6% decrease in the maximum co-contraction time (iii) 33% decrease in number of critical co-contraction. Brain implications shows a mean reduction of 5% on the evaluated potentials.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
19
References
9
Citations
NaN
KQI