Effective approaches to reduce greenhouse gas emissions from waste to energy process: A China study

2015 
Abstract As a way of disposing municipal solid waste (MSW), waste-to-energy (WtE) not only generates energy but also reduces greenhouse gas (GHG) emissions. This paper analyzes two WtE options, i.e. incineration with energy recovery (electricity and heat) (Incineration E hereafter), and landfill with landfill gas (LFG) utilization (Landfill E hereafter). It is imperative to investigate which approach is more effective in terms of GHG emission reduction in different climatic conditions. Two typical northern and southern cities in China, i.e. Tianjin in North China and Xiamen in South China are selected in this study. GHG accounting was undertaken per ton of waste received at the waste plant while GHG contributions were categorized as indirect emissions, direct emissions, substituted fossil fuel emissions and avoided emissions. The results show that North China should adopt Incineration E, while Landfill E is the better choice for South China. This study also benchmarks the waste management practices in these two cities to international practices in Europe in terms of the avoided emissions from both Incineration E and Landfill E approaches. The findings indicate that the energy recovery efficiency in Europe is higher than that of China, especially for Incineration E. Therefore, more efforts are required in China to enhance the substituted fossil fuel emissions, e.g. improving the energy recovery efficiency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    16
    Citations
    NaN
    KQI
    []