Hierarchical GeP5/Carbon Nanocomposite with Dual-Carbon Conductive Network as Promising Anode Material for Sodium-Ion Batteries

2018 
Due to the Earth’s scarcity of lithium, replacing lithium with earth-abundant and low-cost sodium for sodium-ion batteries (SIBs) has recently become a promising substitute for lithium-ion batteries. However, the shortage of appropriate anode materials limits the development of SIBs. Here, a dual-carbon conductive network enhanced GeP5 (GeP5/acetylene black/partially reduced graphene oxide sheets (GeP5/AB/p-rGO)) composite is successfully prepared by a facile ball milling method. The dual-carbon network not only provides more transport pathways for electrons but also relaxes the huge volume change of the electrode material during the charge/discharge process. Compared with only AB- or GO-modified GeP5 (GeP5/AB or GeP5/GO) composite, the GeP5/AB/p-rGO composite shows a superior sodium storage performance with an excellent rate and cycle performance. It delivers a high reversible capacity of 597.5 and 175 mAh/g at the current density of 0.1 and 5.0 A/g, respectively. Furthermore, at the current density of 0...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    27
    Citations
    NaN
    KQI
    []