Chaos of QCD string from holography
2019
It is challenging to quantify chaos of QCD, because non-perturbative QCD accompanies non-local observables. By using holography, we find that QCD strings at large $N_c$ and strong coupling limit exhibit chaos, and measure their Lyapunov exponent at zero temperature. A pair of a quark and an antiquark separated by $L_q$ in the large $N_c$ QCD is dual to a Nambu-Goto string hanging from the spatial boundary of the D4-soliton geometry. We numerically solve the motion of the string after putting a pulse force on its boundaries. The chaos is observed for the amplitude of the force larger than a certain lower bound. The bound increases as $L_q$ grows, and its dependence is well approximated by a hypothesis that the chaos originates in the endpoints of the QCD string.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
74
References
11
Citations
NaN
KQI