Breaking Tolerance in a Mouse Model of Multiple Myeloma by Chemoimmunotherapy

2010 
Abstract A unique mouse model of multiple myeloma (MM), namely 5T2MM-bearing mouse, was useful for elucidating the pathophysiological mechanisms underlying the disease. Increased accumulation of suppressive CD4 + CD25 High Foxp3 + regulatory T cells (Tregs) was observed in the thymus and lymphoid peripheral organs during disease progression. Adoptive transfer of Tregs, but not other thymocytes, from 5T2MM-bearing mice led to increased progression of disease manifestations in young syngeneic mice. Depletion of Tregs, a proposed strategy in cancer immunotherapy, was tested using cyclophosphamide (CYC), an alkylating agent with selective cytotoxicity. Both low- and high-dose CYC, administered to sick mice with hind limb paralysis, caused the paralysis to disappear, the plasma tumor cells in the bone marrow (BM) cavity to be replaced by normal cell populations, and the survival of the mice to be significantly prolonged. Low-dose CYC, which selectively depletes Tregs, decreased MM incidence, in contrast to high-dose CYC, which was generally cytotoxic, and did not reduce MM incidence. In contrast, low-dose CYC induced Tregs to become susceptible to apoptosis by downregulating Bcl-xL and CTLA-4 in these cells, and by decreasing the production of IL-2 by effector CD4 cells. This treatment consequently triggered the recovery of IFN-γ-producing natural killer T cells and the maturation of dendritic cells. Transient gradual depletion of Tregs in low-dose CYC-treated 5T2MM mice was maintained beyond 45 days. Thus, less frequent injections of low-dose CYC enabled us to recruit compatible immune-derived cells that would reduce tumor load and delay or prevent tumor recurrence, hence breaking immune tolerance toward MM tumor cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    387
    References
    20
    Citations
    NaN
    KQI
    []