Polylog depth, highness and lowness for E

2019 
Abstract We study the relations between the notions of highness, lowness and logical depth in the setting of complexity theory. We introduce a new notion of polylog depth based on time bounded Kolmogorov complexity. We show polylog depth satisfies all basic logical depth properties, namely sets in P are not polylog deep, sets with (time bounded)-Kolmogorov complexity greater than polylog are not polylog deep, and only polylog deep sets can polynomially Turing compute a polylog deep set. We prove that if NP does not have p-measure zero, then NP contains polylog deep sets. We show that every high set for E contains a polylog deep set in its polynomial Turing degree, and that there exist Low ( E , EXP ) polylog deep sets. Keywords: algorithmic information theory; Kolmogorov complexity; Bennett logical depth.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    4
    Citations
    NaN
    KQI
    []