Solubility of crystalline nonelectrolyte solutes in organic solvents Mathematical correlation of 2-methoxybenzoic acid and 4-methoxybenzoic acid solubilities with the Abraham solvation parameter model

2004 
The Abraham solvation parameter model is used to calculate the numerical values of the solute descriptors for 2-methoxybenzoic acid and 4-methoxybenzoic acid from experimental solubilities in organic solvents. The mathematical correlations take the form of log(CS/CW) = c + eE + sS + aA + bB + vV log(CS/CG) = c + eE + sS + aA + bB + lL where CS and CW refer to the solute solubility in the organic solvent and water, respectively, CG is a gas phase concentration, E is the solute excess molar refraction, V is the McGowan volume of the solute, A and B are measures of the solute hydrogen-bond acidity and hydrogen-bond basicity, S denotes the solute dipolarity–polarizability descriptor, and L is the logarithm of the solute gas phase dimensionless Ostwald partition coefficient into hexadecane at 298 K. The remaining symbols in the above expressions are known solvent coefficients, which have been determined previously for a large number of gas–solvent and water–solvent systems. The Abraham solvation parameter mode...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    39
    Citations
    NaN
    KQI
    []