Effect of thermal treatment on the CO and H2O sensing properties of MoO3 thin films

2014 
MoO3 thin films were prepared on Corning glass substrates using the chemical spray pyrolysis technique. A 0.1 M solution of ammonium molybdate tetrahydrate was used as precursor one. 5ml and 20 ml of the precursor solution was sprayed with the substrate temperature maintained at 623 K. Thermal treatment involved drying at 393 K for 8 h with continuous N2 flow, followed by a vacuum annealing at 473 K for 2 h in a residual inert atmosphere. XRD indicates that the crystallographic structure corresponded to the orthorhombic α-MoO3 phase. Electrical characterization was carried out in a system operating under high vacuum conditions. The samples could be cooled down to LN2 temperature and heated in a controlled way up to 473 K. To elucidate the electrical response of the films to CO and H2O exposure, the I-V characteristic curve was measured over the whole temperature range. The electrical resistance of the films decreased with increasing temperature. In 5 ml films, the sensitivity to both gases increased which thermal treatment, reaching values between 40% and 60% at room temperature. On the contrary, the 20 ml films' sensitivity decreased almost half of their original values after thermal treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    2
    Citations
    NaN
    KQI
    []