Chemically Bonded N-PDI-P/WO3 Organic-Inorganic Heterojunction with Improved Photoelectrochemical Performance
2020
The chemical bonding of bandgap adjustable organic semiconductors with inorganic semiconducting materials is effective in constructing a high-performance heterogeneous photoanode. In this study, a new asymmetric perylene diimide derivative molecule (N-PDI-P) was synthesized by connecting tert-butoxycarbonyl on an N-site at one end of a PDI molecule through methylene and connecting naphthalene directly onto the other end. This molecule was bonded onto the WO3 film surface, thereby forming the photoanode of organic-inorganic heterojunction. Under light illumination, the photocurrent density of chemically bonded N-PDI-P/WO3 heterojunction was twofold higher than that of physically adhered heterojunction for photoelectrochemical water oxidation at 0.6 V (vs. Ag/AgCl). Energy band structure and charge transfer dynamic analyses revealed that photogenerated electron carriers on the highest occupied molecular orbital (HOMO) of an N-PDI-P molecule can be transferred to the conduction band of WO3. The charge transfer and separation rates were accelerated considerably after the chemical bond formed at the N-PDI-P/WO3 interface. The proposed method provides a new way for the design and construction of organic-inorganic composite heterojunction.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
33
References
1
Citations
NaN
KQI