Dispersionless saturable absorber mirrors with large modulation depths and low saturation fluences

2009 
We show that it is possible to eliminate group delay dispersion over wide bandwidths in low-finesse, resonant saturable absorber mirrors, whilst maintaining a low saturation fluence and a high modulation depth. By modelling the mirror structure we demonstrate that these properties can be produced by capping a resonant device with a single dielectric layer of carefully selected refractive index. We show that a specially capped dispersionless structure minimises the temporal broadening of femtosecond pulses reflected from the mirror. We compare this device against uncapped-resonant and anti-resonant structures. The superior performance of the capped, dispersionless device was verified experimentally by comparing resonant, anti-resonant and dispersionless quantum-dot (QD) saturable absorber mirrors incorporated into a Cr4+:forsterite laser system. We found that a minimum pulse duration of 86 fs could be achieved for the dispersionless structure at 1290 nm with an output power of 55 mW compared to 122 fs in an anti-resonant structure and several-picosecond pulses for a resonant structure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    9
    Citations
    NaN
    KQI
    []