Improving the Lubrication of Silicon Surfaces Using Ionic Liquids as Oil Additives: The Effect of Sulfur-Based Functional Groups

2020 
The performance of micro/nanoelectromechanical systems (MEMS/NEMS) relies on efficient lubrication. In the present work, new sulfur-based organic salts were tested as additives in a polyethylene glycol to lubricate silicon surfaces used in the manufacture of MEMS/NEMS. Seven salts were tested: 1-butylsulfonic-3-methylimidazolium triflate [(C4SO3H)MIM][TfO], thiamine triflate [Thiamine][TfO]2, 1-ethyl-3-methylimidazolium camphorsulfonate [C2MIM][CSA] [isomers (R) and (S)], 1,3-dimethylpiridinium methylsulfate [C1-3pic][MeSO4], methylimidazolium methanesulfonate [HMIM][MeSO3], and tetramethylguanidine methanesulfonate [TMG][MeSO3]. A nanotribometer was used to determine the friction coefficients using steel spheres as counter bodies. Excellent tribological properties were achieved with the additives containing the anions [MeSO4]− and [MeSO3]−. The films formed on the Si substrates were studied by FTIR, ellipsometry and AFM. A mixed lubrication mechanism was proposed where additive adsorption avoids contact between sliding surfaces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    4
    Citations
    NaN
    KQI
    []