Loss of BCL-3 sensitises colorectal cancer cells to DNA damage, revealing a role for BCL-3 in double strand break repair by homologous recombination

2021 
Objective: The proto-oncogene BCL-3 is upregulated in a subset of colorectal cancers (CRC) and increased expression of the gene correlates with poor patient prognosis. The aim is to investigate whether inhibiting BCL-3 can increase the response to DNA damage in CRC.Design: The function of BCL-3 in DNA damage response was studied in vitro using siRNA and CRISPR-Cas9 genome editing and in vivo using Bcl3-/- mice. DNA damage induced by γ-irradiation and/or cisplatin was quantified using H2AX and RAD51 foci, repair pathways investigated using HR/NHEJ assays and treatment with the PARP inhibitor olaparib. Result: Suppression of BCL-3 increases double strand break number and decreases homologous recombination in CRC cells, supported by reduced RAD51 foci number and increased sensitivity to PARP inhibition. Importantly, a similar phenotype is seen in Bcl3-/-mice, where the intestinal crypts of these mice exhibit sensitivity to DNA damage and a greater number of double strand breaks compared to wild type mice. FurthermoreApc.Kras-mutant x Bcl3-/- mice exhibit increased DNA damage and reduced RAD51+ cells compared to their wild type counterparts when treated with cisplatin. Conclusion: This work identifies BCL-3 as a regulator of the cellular response to DNA damage and suggests that elevated BCL-3 expression could increase resistance of tumour cells to DNA damaging agents including radiotherapy. These findings offer a rationale for targeting BCL-3 in CRC as an adjuvant to conventional therapies and suggest that BCL-3 expression in tumours could be a useful biomarker in stratification of rectal cancer patients for neo-adjuvant chemoradiotherapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    0
    Citations
    NaN
    KQI
    []