Investigation of dephasing rates in an interacting Rydberg gas

2009 
We experimentally and theoretically investigate the dephasing rates of the coherent evolution of a resonantly driven pseudo spin emersed in a reservoir of pseudo spins. The pseudo spin is realized by optically exciting 87Rb atoms into a Rydberg state. Hence, the upper spin states are coupled via the strong van der Waals interaction. Two different experimental techniques to measure the dephasing rates are shown: the 'rotary echo' technique, known from nuclear magnetic resonance physics, and electromagnetically induced transparency. The experiments are performed in a dense frozen Rydberg gas, either confined in a magnetic trap or in an optical dipole trap. Additionally, a numerical simulation is used to analyse the dephasing in the rotary echo experiments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    45
    Citations
    NaN
    KQI
    []